Spin transitions of Co3+


       Oxide systems with cobalt ions in octahedral coordination attract attention of both the basic and applied research. The reason is in the possibility of different spin states that depend on the strength of the electrostatic crystal field and covalency effects. In the case of Co3+, the high spin (HS, S=2), intermediate spin (IS, S=1) or low spin (LS, S=0) can be realized. Typical examples are the LaCoO3-derived perovskites that exhibit two transitions in dependence on temperature. The low-temperature transition is associated with a gradual excitation of Co3+ ions from the diamagnetic LS state to a paramagnetic (IS or HS) state, while the high-temperature transition is of the insulator-metal kind, associated also with a magnetic anomaly. The basic properties were described in early 1960-ties. However, there still remains a controversy about the character of the excited species and nature of the high-temperature metallic phase, despite large research effort.

       Our published works complete experimental and theoretical research of perovskite cobaltites LnCoO3 (Ln = La, Y, rare earth). Systematic calculations of the stability of different Co3+ spin states in the perovskite structure have proved that the transition in LaCoO3 at T = 100 K consists of a local excitation from the LS ground state to the close-lying HS state, and pointed to a strong repulsion between neighboring HS states. Starting point to an understanding of the second transition (insulator-metal) was refusal of the traditional idea of the high-temperature metallic phase as a mixture of IS and HS Co3+ states in about 1:1 ratio. Namely, the new analysis of magnetic susceptibility in LaCoO3 has showed that the metallic state is associated with a homogeneous phase with cobalt ions in intermediate-spin state (IS), which coexists with residual regions in the LS+HS mixture. Based on the electron structure calculations it was possible to relate the origin of the IS phase to a temperature activated electron exchange between the LS Co3+-HS Co3+ pairs. In important distinction to previous models, the present scenario of the two-level spin transition in LaCoO3, LS-LS/HS-IS, can be used also for other compounds LnCoO3, where the LS ground state is stabilized with decreasing size of Ln= Nd, Pr,...Dy, Y ions, and both transitions are shifted to higher temperatures, approach each other and merge finally.

       The new model interprets the magnetic and electric behavior not only in the single-valent cobaltites LnCoO3, but also in the doped systems of a mixed Co3+/Co4+ or Co3+/Co2+ valency. The work done on hole- or electron-doped systems LaCo1-xMxO3 and DyCo1-xMxO3 (x = 0 - 0.05, M = Mg2+ and Ti4+) has shown that both kinds of carriers induce magnetic states on neighboring Co sites, originally in the diamagnetic LS Co3+ state. This forms a magnetic polaron of large total spin. Consistently with the above mentioned scenario, the polarons can be viewed as droplets of the IS phase that move in the background of the low-temperature LS or LS/HS phases of undoped LnCoO3 and are finally dissolved in the high-temperature homogeneous IS phase of the host.


[ Laboratory of
  Oxide Materials
]

[ Research ]
  [ Thermoelectrics ]
  [ Magn. nanoparticles ]
  [ Spin Seebeck effect ]
  [ Co-perovskites ]
  [ Mn-perovskites ]
  [ Cu-superconductors ]
  [ DMS ]
  [ Hexaferrites ]

[ Equipment ]
  [ Thermoelectricity ]
  [ Diffraction ]
  [ MPMS&PPMS ]
  [ Synthesis ]
  [ DFT ]

[ Publications ]

[ Staff ]


[ Laboratoř
  oxidových materiálů
]


[ Krystalochemie ]
[ CHAPL ]
[ Kalvados ]

[ Co perovskites ]

[ Spin transitions ]
  [ Publications ]

Laboratory of Oxide Materials

[ Department of Magnetics and Superconductors ]

[ Division of Solid State Physics ] [ Institute of Physics of the CAS ] [ Czech Academy of Sciences ]
    Last change: 7. 1. 2019 (K. Knížek)