Diluted magnetic semiconductors


Thin films of magnetically doped GaN

  • Czech Science Foundation (2013-2016). [GA13-20507S]
  • Collaboration with Institute of Chemical Technology, Prague.
Materials with both semiconductor and magnetic properties, which are commonly called dilute magnetic semiconductors (DMS), are currently considered as most applicable in the fabrication of spintronic devices - viable candidates for advanced computing and communication technologies.We aim to study the wide-gap GaN where, in order to produce a DMS with a high ferromagnetic Curie temperature, the transition metal (TM) and rare earths (RE) will be doped into thin layers of the host GaN structure. Simultaneously, TM and RE doped bulk GaN samples will be prepared as well. The samples will be characterized by means of spectroscopic methods and their structural, magnetic and magnetotransport properties will be measured. The observed characteristics will be critically analyzed and confronted with calculations of electronic structure and the origin of magnetism will be discussed regarding both the intrinsic mechanism of exchange interactions and the possible formation of other magnetic phases

ZnO-based magnetic semiconductors

  • Czech Science Foundation (2009-2011). [GA104/09/0621]
  • Collaboration with Institute of Chemical Technology, Prague.
The semiconductors based on ZnO doped by magnetic impurities belong to a new class of advanced materials, dilute magnetic semiconductors, which have recently received much experimental and theoretical attention as a suitable spin source for spintronic applications. Some of the highly doped wide band gap materials like (Zn,Mn)O reveal a ferromagnetic like behavior near and above room temperature, which is considered as a major criterium for spintronic applications. The present project focuses on material and technological aspects of transition metal (TM) and rare earth (RE) doped ZnO thin films fabricated by metalorganic chemical vapor deposition (MOCVD) technique. The TM and RE elements will be incorporated either by ion implantation followed by annealing or by in-situ MOCVD using MO precursors as TM sources. The corresponding bulk materials will be prepared by ceramic route or as single crystals. The synthesized materials will be chemically and structurally characterized and their magnetic and electric transport properties will be thoroughly examined. The thermodynamic and electronic structure calculations will be used as auxiliary tools to model the MOCVD process and to interpret the physical properties.

Thin Films of Magnetically Doped AiiiN Semiconductors for Spin Electronics Applications

  • Czech Science Foundation (2006-2008). [GA104/06/0642]
  • Collaboration with Institute of Chemical Technology, Prague.
The transition metal (TM) doped AIIIBV semiconductors belong to a new class of advanced materials, dilute magnetic semiconductors, which have recently received much experimental and theoretical attention as a suitable spin source for spintronic devices, such as spin transitors, LEDs, magnetic RAMs and sensors. Some of the highly doped wide band gap materials like (Ga,Mn)N reveal a ferromagnetic like behavior near and above room temperature, which is considered as a major criterion for spintronic applications. The present project focuses on material and technological aspects of the TM doped AIIIN thin films fabricated by metalorganic vapor phase epitaxy (MOVPE) technique. Three different methods will be employed to incorporate TM (Mn, Cr, Fe, Co) into GaN (AlN) thin layers: (a) ion implantation followed by annealing, (b) diffusion at elevated temperatures from vapor deposited metallic layers into intrinsic GaN, and, (c) in-situ MOVPE using MO precursors (C5H5)2TM ) as TM sources. The prepared materials will be chemically and structurally characterized and their magnetic and electric transport properties will be thoroughly examined. The thermodynamic and electronic structure calculations will be used as auxiliary tools to model the MOVPE process and to interpret the physical properties.
Laboratory of Oxide Materials

[ Department of Magnetics and Superconductors ]

[ Division of Solid State Physics ] [ Institute of Physics of the CAS ] [ Czech Academy of Sciences ]

[ Laboratory of
  Oxide Materials
]

[ Research ]
  [ Thermoelectrics ]
  [ Magn. nanoparticles ]
  [ Spin Seebeck effect ]
  [ Co-perovskites ]
  [ Mn-perovskites ]
  [ Cu-superconductors ]
  [ DMS ]
  [ Hexaferrites ]

[ Equipment ]
  [ Thermoelectricity ]
  [ Diffraction ]
  [ MPMS&PPMS ]
  [ Synthesis ]
  [ DFT ]

[ Publications ]

[ Staff ]


[ Laboratoř
  oxidových materiálů
]


[ Krystalochemie ]
[ CHAPL ]
[ Kalvados ]
    Last change: 7. 1. 2019 (K. Knížek)